
Getting Linux into Small Machines

L.C. Benschop

May 29, 2003

Copyright c©2002, 2003, L.C. Benschop, Eindhoven, The Netherlands. Per-
mission is granted to make verbatim copies of this document. This is version 1.1
which has some minor corrections.

Contents

1 Introduction 2
1.1 The Mission . 3
1.2 What needs to be on the diskette? 3
1.3 The Host and Target System . 4

2 First Preparation 4

3 Building uClibc 6

4 Building Busybox 7

5 Other Essential Binaries 8

6 Populating the Root File System 10

7 Building a Kernel 11

8 Making a Bootable Diskette 13
8.1 Booting Linux directly from a diskette 13
8.2 LILO bootable disk . 14
8.3 RAM disk . 15

9 Using the Boot Disks 18

10 And Further 20

1

11 Other Useful Resources 22

1 Introduction

This document serves as an instruction to build a minimal Linux system for use
on rescue diskettes, installation diskettes and embedded projects.

The Bootdisk Howto from the Linux Documentation Project also describes
how to build a bootable diskette, but a diskette created in this way has a few
shortcomings:

• It carries a lot of ballast such as inittab, getty and login. For a
simple to use rescue disk, these programs and their associated configuration
files are not necessary.

• It contains full featured GNU shell utilities that occupy a lot of space.

• It contains the real GNU C libraries, which are very large indeed.

Therefore a boot disk created in this way contains not many useful programs and
it needs a comparatively large RAM disk to load. If you have 8MB of RAM, this
works, but you can forget this on a 4MB or even 2MB machine.

There are two excellent software packages that are specially designed for sav-
ing precious memory and disk space when you are on a tight budget:

• Busybox1 is a combination of a Unix shell and many common Unix utility
programs in a single executable. The size of Busybox is about half that
of the typical bash shell and at that it already contains a few dozen Unix
commands, ranging from ls to gzip. These are trimmed down versions
of course, but adequate in most cases.

• uClibc2 is a scaled down Unix library. The GNU C library is huge, has
every feature on the planet and adheres to every conceivable standard on
every conceivable platform. uClibc is adequate for many applications and
uses much less space.

While the use of Busybox on rescue disks is common, uClibc is rarely used. There
are toolkits to create Busybox based diskettes, but IMHO there is no good instruc-
tional document that describes how to create a bootable Linux diskette with both
Busybox and uClibc. The BootE diskette3 is a bootable Linux diskette with

1http://www.busybox.net
2http://www.uclibc.org
3http://www.everywhere.dk

2

Busybox and uClibc. When I wrote the original text, there used to be no in-
structions on the site how to customize that disk to your needs, but now at least
there is a tar archive with useful scripts and documentation.

In order to achieve huge space savings, we need to recompile everything from
source.

1.1 The Mission

Suppose we have an old 386 machine in the basement that comes with only 4MB
of RAM. We want to show our friends that this old beast can still run Linux.

We must be able to perform the following tasks:

• Partition a hard disk.

• Make a swap partition on the hard disk an use it.

• Create an ext2 file system on the hard disk and make it usable as the root
file system.

• Mount diskettes and a hard disk.

• Edit files.

So basically we have everything to install a Linux root file system on the hard
disk.

1.2 What needs to be on the diskette?

In order to get a Linux system up and running we need the following items:

• A boot loader. This program is loaded by the PC BIOS and this makes it
possible to load another program, such as the Linux kernel.

• the Linux kernel. This is the heart of the operating system.

• a root file system. This is the file system that is mounted when the kernel
is started. The first program that runs (typically /sbin/init has to be in
the root file system. The root file system can exist on a diskette, it can be
loaded in RAM at boot time or it can exist on the hard disk.

The root file system has to contain the following items:

• Binaries that we want to run.

• Startup scripts and other configuration files.

3

• Shared libraries.

• Device files.

• Mount points.

1.3 The Host and Target System

The host system is the computer on which we build the bootable diskette. It is
assumed to be a fairly modern PC with a modern installation of Linux. We will
assume that it is a Pentium with at least 32MB of RAM.

Also we assume that it contains a modern Linux system that contains the fol-
lowing software:

• Linux kernel 2.4

• recent gcc (2.95 or later)

• Loop devices (a kernel feature that allows you to mount a file system on a
file instead of a block device).

• Bzip2

• a recent LILO

You will need lots of hard disk space. Around 300MB would be enough.
The unpacked Linux kernel source tree alone takes around 150MB these days.
Paradoxically enough the end result will fit on a single 1.44MB diskette.

The target system is an old 386 PC with 4MB of RAM or more and zero, one
or two hard disks.

2 First Preparation

First create a directory where we will build the whole project. I chose the name
myboot. I will use this name throughout the document. Type the following
command in your home directory:

mkdir myboot

Obtain the following source packages and collect them into the directory myboot:

4

• The Linux kernel. In our example we take version 2.4.18, which was the
latest version at the time of writing. It may be desirable to use a kernel from
the 2.2 series instead as it requires less memory. Even a kernel from the 2.0
series may do the job, it’s still maintained, but don’t ask me for how long.
Download it from the main kernel site4.

• The small C library uClibc5.

• The shell and utilities Busybox6.

• The utility programs in util-linux. These can be found at the main
kernel site in the kernel archive, the utils subdirectory.

• The package e2fsprogs7 with programs to create and repair file systems.
.

Some of these packages may already be present in your Linux distribution.
For all packages except uClibc and Busybox this is very likely. But of course
there may exist more recent versions.

After you have downloaded all the sources, your myboot directory may look
like this. Of course you may have different (more recent) versions of all programs:

total 27776
-rw-rw-r-- 1 lennartb lennartb 613464 Jun 9 11:44 busybox-0.60.3.tar.bz2
-rw-rw-r-- 1 lennartb lennartb 1376698 Jun 12 19:56 e2fsprogs-1.27.tar.gz
-rw-rw-r-- 1 lennartb lennartb 24161675 Jun 8 19:28 linux-2.4.18.tar.bz2
-rw-rw-r-- 1 lennartb lennartb 1170790 Jun 8 19:00 uClibc-snapshot.tar.bz2
-rw-rw-r-- 1 lennartb lennartb 1065574 Jun 9 16:01 util-linux-2.11r.tar.bz2

So let’s unpack what we’ve got. Type the following commands when inside
the myboot directory:

bunzip2 -c busybox-0.60.3.tar.bz2 | tar xvf -
gunzip -c e2fsprogs-1.27.tar.gz | tar xvf -
bunzip2 -c linux-2.4.18.tar.bz2 | tar xvf -
bunzip2 -c uClibc-snapshot.tar.bz2 | tar xvf -
bunzip2 -c util-linux-2.11r.tar.bz2 | tar xvf -

After this you should have the sources of the five packages, each in its own sub-
directory.

4http://www.kernel.org
5http://www.uclibc.org
6http://www.busybox.net
7http://e2fsprogs.sourceforge.net

5

Note: the myboot directory is assumed to be created under a user’s home
directory. In several places in this text we will use an absolute path to this direc-
tory and on my system this is /home/lennartb/myboot. Other users should
replace this with their own home directory.

Note: in this document you see many sequences of shell commands. Of course
you can put them into shell scripts, so you need not retype them when you try to
build a modified boot disk.

3 Building uClibc

The trickiest part to get right is probably the C library, especially because we want
to use shared libraries. The space savings are tremendous and once this is done
right, you can fit many more utilities on a diskette. The directory where the shared
libraries exist on the target system (where they will be used) is different from the
directory where they exist on the host system. Without special tricks, the binaries
that are compiled with uClibc won’t run on the host system.

First create the following subdirectories under the myboot directory.

• uclibc-dev is the directory that contains everything you need to com-
pile programs with uClibc. Int contains the include files for the uClibc
library and special versions of gcc and similar programs. In fact it is a kind
of cross-compiler, albeit for the same processor architecture.

• rootfs is the directory where everything goes that will be on your bootable
diskette.

Next cd into the myboot/uClibc directory. There run the following com-
mand:

ln -s extra/Configs/Config.i386 Config

Next edit the Config file as follows:

• Your native compiler will probably compile for a 386. If not, you can edit
the line with CROSS=

• Change the line with KERNEL SOURCE to

KERNEL_SOURCE=/home/lennartb/myboot/linux

It is important that this directory matches the kernel that will eventually be
used on the boot diskette.

6

• Check the configuration options. They look reasonable at the moment, ex-
cept that you have to set LFS = true. Even though large file system
support seems unnecessary on old 386 machines with hard disks well under
2GB, some programs will complain if it is not there.

• Below the BIG FAT WARNING: change the line to

SHARED_LIB_LOADER_PATH=/lib

• Change the line with DEVEL PREFIX to

DEVEL_PREFIX=/home/lennartb/myboot/uclibc-dev

Run the following commands to make and install the library. Note that we do
not install the library as root as we do not install it in a system-wide directory.

make
make install
make PREFIX=/home/lennartb/myboot/rootfs install_target

The first command compiles the libraries, the second command installs the
development code into the uclibc-dev directory and the last command installs the
shared libraries into the rootfs directory. These will end up on the root file system
of the bootable diskette.

Compiling with uClibc can be as simple as putting the uclibc-dev direc-
tory first in your path and just running make. Note that you cannot run the pro-
grams you have just made on the host system.

4 Building Busybox

First cd into the myboot/busybox-0.60.3 subdirectory.
Edit the file Conf.h as follows:

• Add or remove support for programs you do or do not want. For each pro-
gram there is a #define BB XXX line that can be commented out or not.
Uncomment the BB VI line, as you would probably need an editor. Leave
the network related programs commented out if you do not enable network
support, otherwise uncomment them. In our example we will not use net-
work support. It’s basically your choice what to put in or not. Though it
may be possible to start Linux with an interactive shell instead of init, we
will leave the init program in.

7

• Uncomment the BB FEATURE USE TERMIOS line.

Edit the Makefile as follows:

• Append -m386 to the CFLAGS EXTRA line.

• Uncomment the CC= line below the comment about uClibc and change it to
CC=/home/lennartb/myboot/uclibc-dev/bin/gcc

• You could enable LFS support, as you already have selected it in the uClibc
library as well.

Now build the program.

make
make PREFIX=/home/lennartb/myboot/rootfs install

Because you have linked with the dynamic uClibc library and these are not
installed in the host system’s /lib directory, the program cannot run. There is
a trick to work around it: by using the chroot command, you can run a program
whose root directory is the specified directory. Become root and type the follow-
ing command:

/usr/sbin/chroot /home/lennartb/myboot/rootfs /bin/sh

The shell that you are now in is the shell inside the
/home/lennartb/myboot/rootfs directory. This shell thinks that this
rootfs directory is in fact the root directory: even the shared libraries of uClibc
in the /lib directory will be found. Type the command ls / and it will be clear.
Exit the chroot subshell with Control-D and everything will be back to normal.

Now you have most common Unix utilities including an editor and a shell and
you’ve spent only 576kB of disk space!

5 Other Essential Binaries

While Busybox offers us many essential Unix utilities, we still miss a few essential
programs for our mission. We cannot partition a hard disk and we cannot create
or repair ext2 file systems. Busybox can be made to include mkfs and fsck for
Minix file systems, but not for the much more common Ext2 file system. Both util-
linx and e2fsprogs complain if you had not built uClibc with large file support.

First start another shell and type the following command:

export PATH=/home/lennartb/myboot/uclibc-dev/bin:$PATH

8

From now on, the uClibc version of gcc will be used instead of the normal
version.

For now we need util-linux only for the fdisk utility. The build procedure is
as follows:

• cd into the util-linux source directory.

• Edit the MCONFIG file as follows:

– Change the CPU line near the top of the file to CPU=i386.

– Add another line to the large CFLAGS statement near the bottom of
the file:

-D__NO_CTYPE \

This line must look like the other lines in the same statement, including
the backslash with a space before it and nothing after it. 8

• Run make.

• Make stops with an error while trying to build mount. We already have a
mount in busybox, so we leave it that way.

• cd into the fdisk directory.

• Run make.

• Move the file fdisk to the directory
/home/lennartb/myboot/roofts/sbin.

Now we will build e2fsprogs as follows:

• Create a directory named build under the e2fsprogs source directory and
cd to it.

• Configure and build the programs: 9

./configure
make BUILD_CC=/usr/bin/gcc

8This option causes real functions to be used for tolower() and friends, instead of macros.
The macros evaluate their arguments twice, where fdisk uses a call to an input function as
argument to tolower().

9The BUILD CC option specifies that we want to use the normal gcc for building a certain
program that must be run on the host system. Otherwise it would be linked with uClibc and
would not run.

9

• Strip and move e2fsck and mke2fs to the rootfs directory.

strip e2fsck/e2fsck.shared
mv e2fsck/e2fsck.shared \

/home/lennartb/myboot/rootfs/sbin/e2fsck
strip mke2fs
mv misc/mke2fs /home/lennartb/myboot/rootfs/sbin

This is the time to build any other programs you will need. Link them with
uClibc and move them to the one of the binary subdirectories in the myboot/rootfs
directory. If linking with uClibc does not work, try to link statically using the
ordinary gcc.

6 Populating the Root File System

The binaries and libraries are already installed in the rootfs directory. Now we
will complete the root file system. First create the remaining directories in rootfs.

cd /home/lennartb/myboot/rootfs
mkdir dev tmp etc proc mnt etc/init.d

Add the device nodes. We will only add the necessary device nodes: two
floppy disks, two hard disks with 8 partitions each and four terminals. Further we
need some memory related devices and a ram disk. Become root and cd to the
dev subdirectory in the myboot/rootfs file system.

mknod fd0 b 2 0
mknod fd1 b 2 1
mknod hda b 3 0
mknod hda1 b 3 1
mknod hda2 b 3 2
mknod hda3 b 3 3
mknod hda4 b 3 4
mknod hda5 b 3 5
mknod hda6 b 3 6
mknod hda7 b 3 7
mknod hda8 b 3 8
mknod hdb b 3 64
mknod hdb1 b 3 65
mknod hdb2 b 3 66
mknod hdb3 b 3 67

10

mknod hdb4 b 3 68
mknod hdb5 b 3 69
mknod hdb6 b 3 70
mknod hdb7 b 3 71
mknod hdb8 b 3 72
mknod tty c 5 0
mknod console c 5 1
mknod tty1 c 4 1
mknod tty2 c 4 2
mknod tty3 c 4 3
mknod tty4 c 4 4
mknod ram b 1 1
mknod mem c 1 1
mknod kmem c 1 2
mknod null c 1 3
mknod zero c 1 5

Add files in the /etc subdirectory. The init program from busybox
works without a login procedure, so the passwd and group files are not re-
ally needed. You could of course create single line versions for the root user and
group. Even the inittab file is not essential and busybox provides a reason-
able default. You are free to copy the scripts/busybox file from the source
directory and customize it. The only file I added in /etc was init.d/rcS,
which must have execute permissions.

#!/bin/sh
mount -t proc none /proc

Make all files in the root file system owned by root:

chown -R 0:0 /home/lennartb/myboot/rootfs

Now we have a complete root file system in a directory. We still need a kernel
and a way to boot. Further we need to transfer the file system to a floppy disk.

7 Building a Kernel

Now it is time to build a kernel. For the target system we will build a kernel that
is different from the host system kernel. W build it under the myboot directory.
First cd to the myboot/linux subdirectory.

The most important job is configuring the kernel. Run the following com-
mand:

11

make menuconfig

Instead of menuconfig you can use config (not recommended!) or xconfig.
This will give a usable kernel for the target system.

• Processor type menu: processor family must be 386, enable math emulation,
switch off everything else. Most 386 systems have no 387 coprocessor, so
they do need math emulation.

• General setup menu: switch off networking support, PCI support, system
V IPC and sysctl support. Support ELF binaries, other formats can be dis-
abled.

• Code maturity, Module support, Memory Technology, Parallel port, Plug
and play, Multi-device, Telephony, SCSI, I2O, Amateur radio, ISDN, Old
CDROM, Input core, Multimedia, Sound, USB and kernel hacking sub-
menus: disable everything.

• Block device submenu: support floppy, RAM disk and initial RAM disk.

• ATA/IDE/MFM/RLL submenu: support, keep everything under the ATA/IDE. . .
block devices submenu the default.

• Character devices submenu: Support virtual terminal, console on virtual
terminal, Unix 98 PTY, disable everything else.

• File systems. Keep second extended, proc and dev PTS enabled. If you
want to mount DOS diskettes, enable fat, msdos and maybe vfat. If you
want to mount a CDROM, enable ISO9660.

• Console drivers. Keep VGA text console enabled.

• Exit and say Yes to save changes.

Of course you must adapt the configuration to the target system you are using.
If your target system has PCI, it would be better to enable it. In that case, you
probably have a 486DX or a Pentium, so the math emulation may go. If you have
SCSI on your target system, you should of course enable support for it and for the
host adapter you are using. If you have SCSI and no IDE devices installed, you
can disable ATA/IDE/MFM/RLL support.

Now we only need to build the kernel:

make clean
make dep
make zImage

12

The kernel described here should be around 400kB and it should work with make
zImage. Use make bzImage instead if you build a kernel with more features,
e.g. networking support.

8 Making a Bootable Diskette

We will describe three methods to boot Linux from a diskette.

• Booting the kernel directly from a diskette and mount a root file system on
a different diskette.

• Booting the kernel with LILO and mount a root file system on a diskette
(possibly the same diskette).

• Booting the kernel with LILO and add a RAM disk for the root file system.

Instead of LILO we could use another boot loader, such as SYSLINUX or GRUB.
This is considered to be outside the scope of this text.

For the boot diskettes we have to format 1.44MB floppy disks or take format-
ted disks that may be erased. In Linux there are two programs to format a diskette.
One program is fdformat. A diskette is formatted as follows:

fdformat /dev/fd0H1440

Some distributions have superformat instead. This is used as follows:

superformat --hd /dev/fd0

We assume 3.5” HD diskettes and we only format them in the standard way
(1440kB), so we do not try to get a few more sectors per track or a few more
tracks.

All commands in this section should be done as root.

8.1 Booting Linux directly from a diskette

We do not have to use a complicated boot loader such a LILO in order to boot
a Linux system. The Linux kernel has its own primitive boot loader. When the
kernel is transferred directly to a diskette with the dd command, the kernel can
boot itself. This way we cannot supply a command line and it works only with
diskettes. We also cannot use the initrd feature, but there is a different way of
loading a RAM disk, which we will not discuss (it is discussed in the Bootdisk
HOWTO).

First we have to create a file system on the root diskette and transfer the files
to it. Type the following commands:

13

mke2fs /dev/fd0
mkdir /home/lennartb/myboot/mnt
mount /dev/fd0 /home/lennartb/myboot/mnt
cp -a /home/lennartb/myboot/rootfs/* \

/home/lennartb/myboot/mnt
umouunt /dev/fd0

The root file system will be mounted read-only. If this is not desired, add the
following line to the file etc/init.d/rcS while the floppy is mounted:

mount -o remount /dev/fd0 /

Next we create the boot disk. With a different diskette in the drive type the
following command:

dd if=/home/lennartb/myboot/linux/arch/boot/zImage \
of=/dev/fd0

rdev /dev/fd0 /dev/fd0

The rdev command selects the device on which the root file system should be
mounted by the kernel after booting. We could use the following command to
make the diskette mount the root file system on the first hard disk partition.

rdev /dev/fd0 /dev/hda1

8.2 LILO bootable disk

First make the root diskette as described in the previous section. There are two
ways to proceed:

• Mount the root diskette and install the kernel and LILO on it. This way
we have a self-contained diskette that boots and has the root file system.
It works for the kernel and the utilities as described in this article, but you
would quickly run out of disk space when adding more features to the kernel
or more utilities to the root file system.

• mke2fs a different diskette for the kernel and LILO. This way we still have
two diskettes and more space on each.

The LILO diskette is either the root diskette to which we will add LILO or the
separate diskette on which we will install LILO.

Mount the LILO diskette and add the kernel and boot loader to it:

14

mount /dev/fd0 /home/lennartb/myboot/mnt/
mkdir /home/lennartb/myboot/mnt/boot
cp /home/lennartb/myboot/linux/arch/i386/boot/zImage \

/home/lennartb/myboot/mnt/boot
cp /boot/lilo/boot.b /home/lennartb/myboot/mnt/boot

Create the file /home/lennartb/myboot/lilo.conf as follows:

boot=/dev/fd0
install=/home/lennartb/myboot/mnt/boot/boot.b
map=/home/lennartb/myboot/mnt/boot/map
delay=100
compact
image=/home/lennartb/myboot/mnt/boot/zImage

label=linux
root=/dev/fd0

All relevant files mentioned in lilo.conf are on the mounted diskette. The
delay option will wait 10 seconds, so we have the opportunity to type a com-
mand line in LILO. The compact option makes loading much faster. Try it
without and compare.

Run LILO. This will add a map file to the /boot directory on the diskette
and it will add a boot sector to the diskette. The boot sector will load the loader in
boot.b, this will load the map file and the map file contains a list of sectors of the
kernel, so this can be loaded.

lilo -C /home/lennartb/myboot/lilo.conf

Finally unmount the LILO diskette.

unount /dev/fd0

8.3 RAM disk

A RAM disk has the following advantages.

• Once the system is booted, programs will load faster.

• Once the system is booted, the diskette can be removed from the drive.
Therefore the floppy drive can be used to load other programs or to restore
a hard disk partition from backup diskettes.

15

• The RAM disk image can be stored compressed on the diskette. A full
1.44MB or even 2MB file system can be stored compressed on a diskette
together with a kernel. A compressed 4MB or 8MB file system is also
possible as long as it is not completely filled. After booting the system, you
can copy programs from other diskettes into the RAM disk.

The RAM disk has the following disadvantages:

• It requires more RAM to run. The RAM disk configuration described in this
system will boot on a system with 4MB of RAM, but this is pretty much the
limit. More kernel features or more utilities would make this RAM disk
unusable on a 4MB system.

• It requires more steps to create or to adapt the root file system.

• Changes made to the root file system are not permanent. This is either
an advantage (security) or a disadvantage (configuration changes are not
possible).

First we have to create an image file for the RAM disk. We limit its size to
1000K, so it still runs on a 4MB machine. Create a file system on the image file.
The -N 200 option is necessary to create enough inodes on the file system, as
there are a lot of symbolic links.

dd if=/dev/zero of=/home/lennartb/myboot/root.img \
bs=1k count=1000

mke2fs -F -N 200 /home/lennartb/myboot/root.img

Next mount the image file using a loop device and copy all files of the root file
system to it. The loop option to mount makes it possible to mount a regular file as
if it were a block device.

mount -o loop /home/lennartb/myboot/root.img \
/home/lennartb/myboot/mnt

cp -a /home/lennartb/myboot/rootfs/* \
/home/lennartb/myboot/mnt

umount /home/lennartb/myboot/mnt

Compress the root file system image. This image file will be copied to a
diskette.

gzip -9 /home/lennartb/myboot/root.img

Create a new LILO diskette, mount it and add the kernel, root file system
image and boot loader to it:

16

mke2fs /dev/fd0
mount /dev/fd0 /home/lennartb/myboot/mnt/
mkdir /home/lennartb/myboot/mnt/boot
cp /home/lennartb/myboot/linux/arch/i386/boot/zImage \

/home/lennartb/myboot/mnt/boot
cp /home/lennartb/myboot/root.img.gz \

/home/lennartb/myboot/mnt/boot
cp /boot/lilo/boot.b /home/lennartb/myboot/mnt/boot

Create the file /home/lennartb/myboot/lilo-initrd.confas fol-
lows:

boot=/dev/fd0
install=/home/lennartb/myboot/mnt/boot/boot.b
map=/home/lennartb/myboot/mnt/boot/map
delay=100
compact
image=/home/lennartb/myboot/mnt/boot/zImage

label=linux
root=/dev/ram
initrd=/home/lennartb/myboot/mnt/boot/root.img.gz

image=/home/lennartb/myboot/mnt/boot/zImage
label=noram
root=/dev/fd0

The configuration file is almost the same, except for the initrd option. This
causes the boot loader to load a RAM disk image into memory. The Linux kernel
will decompress it to a RAM disk device and mount this as the root file system 10.
Further we added a noram option, so it is also possible to use this LILO diskette
without a RAM disk.

Run LILO:

lilo -C /home/lennartb/myboot/lilo-initrd.conf

Finally unmount the LILO diskette:

unount /dev/fd0

10The initrd feature makes it possible to mount the root file system twice, once on the RAM
disk loaded by the boot loader and once on another device (most likely a disk partition). The RAM
disk can contain an initialization routine to load the required modules to mount the root disk. This
two stage root file system feature is not used here.

17

9 Using the Boot Disks

First boot Linux by putting the appropriate Linux diskette into the floppy drive.

• If you boot from a diskette without LILO, you should see a “Loading” mes-
sage right away. After some disk activity you should see the message “Un-
compressing Linux” and a little later you should see the kernel messages.
Next it prompts for the root diskette. Remove the boot disk and insert the
root diskette and press enter.

• If you boot from a diskette with LILO, you should see the LILO message. If
you press the space bar, you should see the boot prompt from LILO, if you
don’t you should see the message “Loading linux” after 10 seconds. Af-
ter some disk activity you should see the “Uncompressing Linux” message,
some kernel messages and next the kernel will prompt for a root diskette. If
the LILO diskette contains the root file system, you just press enter, other-
wise you have to swap disks first.

• If you boot from a diskette with LILO and a RAM disk, everything starts
the same as in the previous case. Instead of prompting you for a boot disk,
the kernel should display a message that a compressed RAM disk image
was found. It automatically proceeds after decompressing.

As soon as the root file system is mounted, you should see a message from Busy-
box. A few seconds later you are invited to press enter. After you press enter, you
get a root shell prompt, which should be very familiar. With the function keys
ALT-F1, ALT-F2, ALT-F3 and ALT-F4 you can switch to four virtual terminals
and you should be able to get a shell prompt on all four of them.

WARNING: If your root file system is on a floppy disk (you are not using a
RAM disk), do not remove this diskette from the drive when Linux is running.
If you use a RAM disk or if you moved all of your root file system to the hard
disk and booted with the option root=/dev/hd??, then it is OK to remove the
diskette as soon as Linux has started.

Type the reboot command in order to shut the system down. If you are using
a root file system on a diskette, you should wait until the PC has rebooted before
removing the diskette.

What we can do is installing the linux root file system on the hard disk. First
we have to (re)partition the hard disk. Type the following command:

fdisk /dev/hda

While inside fdisk use the p command to show the current partition table.
Maybe you find an old DOS partition that you still want to backup. If so, quit

18

fdisk now using the q command. If you can part with that old DOS partition,
you can delete partitions with the d command and create new partitions with the n
command. Finally you can write the modified partition table with the w command.
Using fdisk you should be able to create the following partitions:

• A swap partition (set type to 0x82 with the t command) of around 16MB.
Suppose this is partition 2 (/dev/hda2).

• A Linux partition occupying the rest of the disk. Suppose this is partition 1
(/dev/hda1).

After partitioning the hard disk, create a swap partition with the mkswap com-
mand, create an ext2 file system and copy all data to it. Type the following com-
mands. Of course we assume that the Linux partition is /dev/hda1 and the
swap partition is /dev/hda2. Otherwise you must supply appropriate device
names.

mkswap /dev/hda2
swapon /dev/hda2
mke2fs /dev/hda1
mount /dev/hda1 /mnt
mkdir /mnt/proc /mnt/mnt
cp -a /bin /sbin /usr /etc /lib /dev /tmp /mnt

Edit the file /mnt/etc/init.d/rcS. If you haven’t learned vi by now,
tough luck.

#!/bin/sh
mount -a
swapon -a

Edit the file /mnt/etc/fstab as follows:

/dev/hda1 / ext2 defaults 0 0
none /proc proc defaults 0 0
/dev/hda2 swap swap defaults 0 0

Now we can shut the system down.

umouunt /dev/hda1
reboot

Reboot the system with the boot diskette in the drive.
As soon as you see the word LILO, press the SHIFT key. Now you see a boot

prompt. If you use a boot diskette without a RAM disk, type:

19

linux root=/dev/hda1

If you use a boot diskette with a RAM disk, type this at the boot prompt:

noram root=/dev/hda1

If you have a boot diskette without LILO, you have to go to the host system
and change the root device using the rdev command:

rdev /dev/fd0 /dev/hda1

After this, reboot the target system with the modified diskette.
In any case, your system should now mount the root file system on your hard

disk and your floppy drive will be free to mount other diskettes, so you can copy
more files to the hard disk.

10 And Further

We showed you how to create a boot diskette with one set of features. Now you
know how to do this, you should be able to customize it to your needs. You can
turn it into a full featured rescue disk, an installation disk for your brand new
Linux distribution, a demonstration disk or an embedded project, such as a router
or print server.

First try to add kernel module support. Modules come in very handy for de-
vices that are seldom used or are only available on some target systems. Serial
ports, network adapters and SCSI features may be candidates for compiling as
modules, as well as additional file systems. In order to use modules you have to
do the following:

• Reconfigure the kernel with module support enabled. Configure certain fea-
tures to be compiled as modules.

• Rebuild the kernel.

• Run the additional make step make modules.

• Copy the kernel to the boot disk (and run LILO if necessary).

• Copy the modules to the root file system or a different diskette.

• Rebuild busybox with the insmod and rmmod commands enabled. Move
this to the root file system as well.

20

• If you use a RAM disk, you should recreate a RAM disk image, compress
it and rerun LILO on your boot disk . If you hadn’t made a shell script to
perform all these tasks, you should do by now.

One additional feature that you might try (it only exists in 2.4 kernels) is the
devfs file system. Instead of a /dev directory with hundreds of useless device
node you mount a pseudo file system on the /dev directory, not unlike the /proc
file system. There the device nodes appear for only the devices that exist.

After module support you may want to add network support. Once you have
added an Ethernet adapter to your old 386, you can connect it to your LAN and
you do not need diskettes so often. With a little bit of luck, this still runs on a
4MB machine, but forget about using a RAM disk.

• Rebuild the kernel with networking enabled. Of course you have to rebuild
the modules as well.

• Rebuild Busybox with network commands enabled (ifconfig, telnet, ping
etc.)

• Copy all relevant files to their respective places.

• Recreate the RAM disk image and rerun LILO if appropriate.

You can add additional programs and libraries to the target system.

• Many programs need curses. The ncurses library is reported to be
usable with uClibc. You must recompile it in order to achieve this. You
will probably need a stripped down termcap file on your target system as
well.

• With ncurses and the standard libraries of uClibc, you should really be
able to compile a lot of programs that do not require X.

• Some make files try to run the programs you have just built. This can be
a problem. It should be possible to copy the uClibc shared libraries to
the /lib directory of the host system, as their names are different from the
glibc libraries. The programs linked against glibc will still work and
the uClibc programs will work too. I just haven’t tried this, so don’t do it
on a life-critical system or if you haven’t made a backup.

• Even gcc and X are reported to work with uClibc, so give them a try! A
target system with uClibc as the only C library should therefore be able
to run a C development environment and X. Building this is certainly not
for beginners.

21

The RAM disk version of the boot disk runs on a 4MB machine, the version
without RAM disk should run with 3MB or RAM, but nothing so far has run on a
machine with just 2MB of RAM. In the good old days, people ran Linux routinely
on such machines and it should still be possible with modern (if not the newest)
software. Some hints:

• Do not use a RAM disk.

• Remove more features from the kernel. RAM disk support can be removed,
use the disk-only driver instead of the more functional IDE driver, remove
file systems such as FAT and ISO9660. If you do have a 387 in that 2MB
box, get rid of math emulation.

• Use an older kernel, 2.2 or even 2.0. Note: if you use 2.0, remember to
use the -O none option on mke2fs if you make a file system for the tar-
get system. Kernel 2.0 does not understand some features added by later
kernels.

• Remove more functions from busybox. This should not help much as busy-
box will be demand loaded. Parts that are not demanded, will not be loaded.
It may help to a certain degree. Features like color ls and command line
editing can be removed and a more primitive shell can be utilized.

• Remove init and start /bin/sh directly at startup.

• If this lets you do do fdisk, mkswap and swapon, you can get swapping
enabled on the target system. From there you should be fine.

11 Other Useful Resources

This article should have shown you how to create useful bootable diskettes and
minimal Linux systems with just the programs you need. You cannot be without
the following resources:

• Linux from scratch11. If you got the taste of creating your own Linux sys-
tem, one program at a time, one file at a time, compiling everything from
source, then this is the next big thing. This site contains a detailed instruc-
tion how to compile a complete Linux system completely from source, in-
cluding the libraries, C compiler and utilities. The target system is created
on the hard disk and not on a diskette.

11http://www.linuxfromscratch.org

22

• Freshmeat12. This site contains an index of almost all programs available
for Linux. Most open source programs can be found there.

• The Linux Documentation Project13. This site contains all Linux related
documentation you ever wanted.

• My homepage14 contains the online version of this document.

12http://www.freshmeat.net
13http://www.tldp.org
14http://www.xs4all.nl/˜lennartb

23

