
Making Linux Installation Disks for Fun and
Profit

L.C. Benschop

July 16, 2003

Copyright c©2002, 2003, L.C. Benschop, Eindhoven, The Netherlands. Per-
mission is granted to make verbatim copies of this document. This document is
derived from “Getting Linux into Small Machines” by the same author.

Contents

1 Introduction 2
1.1 The Mission . 3
1.2 What needs to be on the diskette? 4
1.3 The Host and Target System . 5

2 First Preparation 5

3 Building uClibc 7

4 Building Busybox 8

5 Building Curses and dialog 9

6 Other Essential Binaries 11

7 Populating the Root File System 13

8 Building a Kernel 15

9 Making a Bootable Diskette 17
9.1 Compiling GRUB . 18
9.2 Creating the RAM Disk Image 18
9.3 Creating the Boot Diskettes . 19

1

9.4 Using the diskettes . 20

10 Creating a CD-ROM 21
10.1 Creating the RAM disk image 21
10.2 Creating the Diskette Image . 21
10.3 Creating the Bootable CD . 23

11 Creating the Install Scripts 23
11.1 Example Installation Scripts . 23
11.2 Configuring Linux . 29
11.3 Making the System Bootable . 30
11.4 Debugging Installation Scripts 31

12 Conclusion 32

1 Introduction

In my previous article “Getting Linux into Small Machines” I described how to
create a bootable Linux diskette with Busybox (shell with many built in utilities)
and uClibc (a small C library). These programs save an enormous amount of
memory and disk space, so that they are usable even on small machines.

In this article I want to carry the idea of creating a small boot diskette a step
further. Especially I want to achieve the following goals:

• Updating the software to the latest available versions.

• Adding more functionality to the diskette. Especially I want to add the
following extra features:

– Module support, especially for SCSI and Ethernet cards.

– Network support.

– Curses support, especially useful for the dialog utility.

• Laying the basis for a more generalized Linux installer.

I will draw many ideas from the Debian1 installer. Busybox was created for
the Debian install diskettes in the first place and the Debian installer made heavy
use of the dialog utility.

The ideas described in this article should not only be useful for installation
disks, but also for special-purpose stand-alone Linux versions such as routers or
print servers.

1http://www.debian.org

2

Albeit reluctantly, I will abandon the idea of targeting a 386 system with only
4MB or RAM. As even a stripped down Linux kernel needs around 3MB of mem-
ory to run and I plan to use a RAM disk of at least 2MB, the use of a RAM disk
on a 4MB machine is definitely out if the installation is to be considered useful.
Systems without a RAM disk would need their root file system on a diskette and
that would be limited to 1.44MB (it cannot be compressed).

1.1 The Mission

We want to create an installation diskette that enables us to install a Linux distri-
bution onto a hard disk. The system is considered to meet the following require-
ments:

• A 486DX CPU or later. This requirement is arbitrary. It allows us to leave
FPU emulation out of the kernel and leave out special support for the 386.

• 8MB or RAM.

• A hard disk on either an (E)IDE interface or a SCSI interface.

• Either an Ethernet card or a CD-ROM drive.

– The Ethernet card must be connected to a (local) network with a static
IP address. We could add a DHCP client as well.

– The CD-ROM must be ATAPI or SCSI.

• A normal diskette drive or the ability to boot from CD-ROM.

The Linux installer would need to pull a huge tarball from somewhere, either from
a CD-ROM or from a network connection. We could devise other methods to get
the tarball into the machine. We could use another operating system to put the
tarball onto a hard disk partition and we could write the tarball onto a large pile of
floppies and read them one by one. Especially the latter is considered unwieldy.

At the moment the system does not support PCMCIA or USB devices to install
from. For laptops it means that their Ethernet cards would not be accessible. The
Debian installer (version 2.1) could do this though.

The aim of this article is to assist in creating a simple boot diskette for your
own Linux distribution. This is only the infrastructure for the installation diskette,
not a completely working installation diskette.

What needs to be added:

• The Linux distribution itself. In its simplest form this can be a huge tarball
(compressed tar archive) that contains all files that should go onto the hard

3

disk. If you create Linux from Scratch2, a brand new Linux system is cre-
ated on a separate hard disk partition on the host system. The contents of
this partition can be put in a tarball, which can then be put on a CD-ROM
and then it can be installed on a target system using this installation diskette.

Any existing Linux installation (regardless of the distribution it was origi-
nally created with) could in principle be archived and restored this way.

• A set of shell scripts (using dialog) that guides the user through the instal-
lation process. This is not strictly necessary, but if non-experts are expected
to install the distribution, this is of course necessary.

1.2 What needs to be on the diskette?

In order to get a Linux system up and running we need the following items:

• A boot loader. This program is loaded by the PC BIOS and this makes it
possible to load another program, such as the Linux kernel. We will make
use of the GRUB boot loader, especially due to its flexibility.

• The Linux kernel. This is the heart of the operating system.

• A root file system. This is the file system that is mounted when the kernel
is started. The first program that runs (typically /sbin/init has to be in
the root file system. The root file system can exist on a diskette, it can be
loaded in RAM at boot time or it can exist on the hard disk.

On our boot diskette we will use an initial RAM disk (initrd), which will be
loaded by the boot loader before the kernel starts.

The root file system has to contain the following items:

• Binaries that we want to run.

• Startup scripts and other configuration files.

• The installation scripts themselves.

• Shared libraries.

• Device files.

• Mount points.

2http://www.linuxfromscratch.org

4

1.3 The Host and Target System

The host system is the computer on which we build the bootable diskette. It is
assumed to be a fairly modern PC with a modern installation of Linux. We will
assume that it is a Pentium with at least 32MB of RAM.

Also we assume that it contains a modern Linux system that contains the fol-
lowing software:

• Linux kernel 2.4

• recent gcc (2.95 or later)

• Loop devices (a kernel feature that allows you to mount a file system on a
file instead of a block device).

• Bzip2

• Support for the various file systems that we want to use.

You will need lots of hard disk space. Around 400MB would be enough.
The unpacked Linux kernel source tree alone takes around 170MB these days.
Paradoxically enough the end result will fit on one or two 1.44MB diskettes.

The target system is the system on which the diskette will be booted. It is
supposed to be at least a 486 with 8MB of RAM.

2 First Preparation

First create a directory where we will build the whole project. I chose the name
myboot. Make an environment variable with the name MYBOOT, that contains
the name of this directory. It is advised that you assign this variable from a script.
I will use this variable throughout the document. Type the following commands
in your home directory (assuming you use the bash shell):

mkdir myboot
export MYBOOT=˜/myboot

Obtain the following source packages and collect them into the directory myboot:

• The Linux kernel. In our example we take version 2.4.21, which was the
latest version at the time of writing. It may be desirable to use a kernel from
the 2.2 series instead as it requires less memory. Even a kernel from the 2.0
series may do the job, it’s still maintained, but don’t ask me for how long.
Download it from the main kernel site3.

3http://www.kernel.org

5

• The small C library uClibc4. This can also be downloaded from the main
kernel site, the kernel archive, the libs subdirectory.

• The shell and utilities Busybox5.

• The utility programs in util-linux. These can be found at the main
kernel site in the kernel archive, the utils subdirectory6.

• The package e2fsprogs7 with programs to create and repair file systems.

• The ncurses8 library.

• The dialog9 utility.

• The keyboard utilities in the kbd package. These can be found at the main
kernel site in the kernel archive, the utils subdirectory. This is essential
if you live in a country (such as Belgium or Germany) where they don’t use
the one true QWERTY layout.

• The GRUB10 boot loader.

Some of these packages may already be present in your Linux distribution (in
source form). For all packages except uClibc and Busybox this is very likely.
But of course there may exist more recent versions.

After you have downloaded all the sources, your myboot directory may look
like this. Of course you may have different (more recent) versions of all programs:

total 38572
-rw-r--r-- 1 lennartb users 626209 2003-06-08 12:58 busybox-0.60.5.tar.bz2
-rw-r--r-- 1 lennartb users 215806 2003-05-29 19:03 dialog_0.9b-20030308.o
rig.tar.gz
-rw-r--r-- 1 lennartb users 2959524 2003-04-22 01:40 e2fsprogs-1.33.tar.gz
-rw-r--r-- 1 lennartb users 877112 2003-03-24 17:14 grub-0.92.tar.gz
-rw-r--r-- 1 lennartb users 819924 2003-06-08 12:36 kbd-1.08.tar.gz
-rw-r--r-- 1 lennartb users 28533733 2003-07-06 13:16 linux-2.4.21.tar.bz2
-rw-r--r-- 1 lennartb users 2067718 2003-03-24 17:24 ncurses-5.3.tar.gz
-rw-r--r-- 1 lennartb users 1501374 2003-07-13 13:17 uClibc-0.9.20.tar.bz2
-rw-r--r-- 1 lennartb users 1839967 2003-06-08 12:52 util-linux-2.11z.tar.gz

So let’s unpack what we’ve got. Type the following commands when inside
the myboot directory:

4http://www.uclibc.org
5http://www.busybox.net
6http://www.kernel.org/pub/linux/utils
7http://e2fsprogs.sourceforge.net
8http://www.gnu.org/directory/GNU/ncurses.html
9http://hightek.org/dialog

10http://www.gnu.org/directory/GNU/grub.html

6

bunzip2 -c busybox-0.60.5.tar.bz2 |tar xvf -
gunzip -c dialog_0.9b-20030308.orig.tar.gz |tar xvf -
gunzip -c e2fsprogs-1.33.tar.gz |tar xvf -
gunzip -c grub-0.92.tar.gz |tar xvf -
gunzip -c kbd-1.08.tar.gz |tar xvf -
bunzip2 -c linux-2.4.21.tar.bz2b |tar xvf -
gunzip -c ncurses-5.3.tar.gz |tar xvf -
bunzip2 -c uClibc-0.9.20.tar.bz2 |tar xvf -
gunzip -c util-linux-2.11z.tar.gz |tar xvf -

After this you should have the sources of the nine packages, each in its own sub-
directory.

Note: the $MYBOOT shell variable must point to the myboot directory.
Note: in this document you see many sequences of shell commands. Of course

you can put them into shell scripts, so you need not retype them when you try to
build a modified boot disk.

3 Building uClibc

The trickiest part to get right is probably the C library, especially because we want
to use shared libraries. The space savings are tremendous and once this is done
right, you can fit many more utilities on a diskette. The directory where the shared
libraries exist on the target system (where they will be used) is different from the
directory where they exist on the host system. Without special tricks, the binaries
that are compiled with uClibc won’t run on the host system.

First create the following subdirectories under the myboot directory.

• uclibc-dev is the directory that contains everything you need to compile
programs with uClibc. It contains the include files for the uClibc library
and special versions of gcc and similar programs. In fact it is a kind of
cross-compiler, albeit for the same processor architecture.

• rootfs is the directory where everything goes that will be on your bootable
diskette.

Next cd into the myboot/uClibc-0.9.20 directory. There run the fol-
lowing command:

make menuconfig

Next set the following configuration options in the menu:

7

• Target architecture features and options: set target CPU to 486 and leave
the rest at the defaults. Do not forget to set the correct kernel source. Fill
in $(MYBOOT)/linux-2.4.21. MYBOOT must be in normal (round)
parentheses.

• General Library settings: disable support for global constructors and de-
structors and profiling, leave the rest at the defaults.

• Networking support: enable RPC support, it’s useful for NFS mounts.

• Library installation options. This it the trickiest part.

– Set shared Library Loader path (first item) to /lib. This is the li-
braries will be loaded on the target diskette, so any prefix must be left
out.

– Set uClibc environment directory (second item) to
$(MYBOOT)/uclibc-dev. This is where all files will end up that
are needed by the C compiler when compiling and linking programs
with uClibc.

Run the following commands to make and install the library. Note that we do
not install the library as root as we do not install it in a system-wide directory.

make
make install
make PREFIX=$MYBOOT/rootfs install_target

The first command compiles the libraries, the second command installs the
development code into the uclibc-dev directory and the last command installs the
shared libraries into the rootfs directory. These will end up on the root file system
of the bootable diskette.

Compiling with uClibc can be as simple as putting the uclibc-dev direc-
tory first in your path and just running make. Note that you cannot run the pro-
grams you have just made on the host system.

4 Building Busybox

First cd into the $MYBOOT/busybox-0.60.5 subdirectory.
Edit the file Conf.h as follows:

• Add or remove support for programs you do or do not want. For each
program there is a #define BB XXX line that can be commented out

8

or not. I uncommented the following lines, some of these commands are
expected to be useful in install scripts, others are necessary for network ac-
cess or modules and of course I wanted the vi editor: BB CMP, BB EXPR,
BB IFCONFIG, BB INSMOD, BB PING, BB RMMOD, BB ROUTE, BB VI
and BB WGET.

• Add or remove features that you do or do not want by uncommenting or
commenting th corresponding feature line. I uncommented the following:
BB FEATURE USE TERMIOS, BB FEATURE MOUNT NFSMOUNT and
BB FEATURE IFCONFIG STATUS.

Edit the Makefile as follows:

• Uncomment the CC= line below the comment about uClibc and change it to
CC=${MYBOOT}/uclibc-dev/bin/gcc

• You could enable LFS support, as it is already selected in uClibc as well.

Now build the program.

make
make PREFIX=$MYBOOT/rootfs install

Because you have linked with the dynamic uClibc library and these are not
installed in the host system’s /lib directory, the program cannot run. There is
a trick to work around it: by using the chroot command, you can run a program
whose root directory is the specified directory. Become root and type the follow-
ing command:

/usr/sbin/chroot $MYBOOT/rootfs /bin/sh

The shell that you are now in is the shell inside the $MYBOOT/rootfs directory.
This shell thinks that this rootfs directory is in fact the root directory: even
the shared libraries of uClibc in the /lib directory will be found. Type the
command ls / and it will be clear. Exit the chroot subshell with Control-D
and everything will be back to normal.

Now you have most common Unix utilities including an editor and a shell and
you’ve spent only 614kB of disk space!

5 Building Curses and dialog

If you thought uClibcwas tricky to build correctly, you will have an even harder
time with ncurses. Do it exactly as I tell you and it will work, at least for the
current version of the software. Set the uClibc directory first in your path. Do
this in a subshell, so you can return by leaving that shell.

9

bash
export PATH=$MYBOOT/uclibc-dev:$PATH

Now configure and build ncurses:

./configure --with-build-cc=/usr/bin/gcc \
--host=i686-unknown-linux --without-cxx \
--prefix=/home/lennartb/myboot/uclibc-dev/

make
make install

It builds a static library only. It sucks, but at the moment I don’t know a better
solution.

Next go to the dialog directory in order to build the dialog utility:

./configure
make
strip dialog
mv dialog ../rootfs/usr/bin

Next comes the ugliest thing of all: ncurses expects its terminfo files in the
$MYBOOT/uclibc-dev subdirectory, even on the target system! There are
proper ways around that, I think, but for now we will simply create that directory
within the target system.

mkdirhier $MYBOOT/rootfs$MYBOOT/uclibc-dev/share/terminfo/l
cp $MYBOOT/uclibc-dev/share/terminfo/l/linux \

$MYBOOT/rootfs$MYBOOT/uclibc-dev/share/terminfo/l

The first command creates the directory under the rootfs directory and the second
command copies the terminfo file into it. The linux file is the only one we need.

We are eager to test the whole thing. First become root and chroot into the
rootfs environment.

/usr/sbin/chroot $MYBOOT/rootfs /bin/sh

Next type the following commands:

export TERM=linux
dialog --msgbox "Hello, world" 5 20

This looks much nicer if you try it on a text console.

10

6 Other Essential Binaries

While Busybox offers us many essential Unix utilities, we still miss a few essen-
tial programs for our mission. We cannot partition a hard disk, we cannot select
an appropriate keyboard layout and we cannot create or repair ext2 file systems.
Busybox can be made to include mkfs and fsck for Minix file systems, but
not for the much more common Ext2 file system. Both util-linx and e2fsprogs
complain if you had not built uClibc with large file support.

First start another shell and type the following command:

export PATH=$MYBOOT/uclibc-dev/usr/bin:$PATH

From now on, the uClibc version of gcc will be used instead of the normal
version.

For now we need util-linux only for the fdisk and cfdisk utilities. The
build procedure is as follows:

• cd into the util-linux source directory.

• Run configure and make.

• Make stops with an error while trying to build swapon. We already have a
swapon in busybox, so we leave it that way.

• cd into the fdisk directory.

• Run the following commands.

cp $MYBOOT/uclibc-dev/include/ncurses/curses.h \
$MYBOOT/uclibc-dev/include

make HAVE_NCURSES=yes LIBCURSES=-lncurses

All the trouble is to get cfdisk compiled, so we can use it in addition to or
instead of the stone age fdisk program.

• Copy the binaries fdisk and cfdisk to the $MYBOOT/rootfs/sbin di-
rectory.

Now we will build e2fsprogs as follows:

• Create a directory named build under the e2fsprogs source directory and
cd to it.

11

• Configure and build the programs: 11

./configure
make BUILD_CC=/usr/bin/gcc

• Strip and move e2fsck and mke2fs to the rootfs directory.

strip e2fsck/e2fsck.shared
mv e2fsck/e2fsck.shared $MYBOOT/rootfs/sbin/e2fsck
strip misc/mke2fs
mv misc/mke2fs $MYBOOT/rootfs/sbin

Now we still need to be able to load keyboard definitions for foreign key-
boards. Now enter the kbd subdirectory. Run the local configure command and
then create the file defines.h with the following contents:

#define LC_ALL 0

Now you can make the program without errors, but apparently it is a bit buggy.
Move the loadkeys binary and key maps to the rootfs directory.

strip src/loadkeys
mv src/loadkeys $MYBOOT/rootfs/usr/bin
mkdir $MYBOOT/rootfs/usr/share/kbd
cp -a data/keymaps $MYBOOT/usr/share/kbd

Now you can weed out a lot of those keymap files that we do not need. Start
with removing the amiga, atari, mac and sun directories. In the i386 directories
there are probably only a few maps you want to keep, one for each country that
your product may need to be used. All files that are left can be compressed with
gzip. I kept the keymaps for Belgium, France, Germany, UK and US (used almost
exclusively in the Netherlands) and all include directories (and these are probably
not even needed). If you want to test loadkeys using the familiar chroot trick, this
only works on a text console and you may need some of the device nodes already
in place (see next chapter).

This is the time to build any other programs you will need. Link them with
uClibc and move them to the one of the binary subdirectories in the
$MYBOOT/rootfs directory. If linking with uClibc does not work, try to link
statically using the ordinary gcc.

11The BUILD CC option specifies that we want to use the normal gcc for building a certain
program that must be run on the host system. Otherwise it would be linked with uClibc and
would not run.

12

7 Populating the Root File System

The binaries and libraries are already installed in the rootfs directory as well
as some support files, such as the key maps and the terminfo file. Now we will
complete the root file system. First create the remaining directories in rootfs.

cd $MYBOOT/rootfs
mkdir dev tmp etc proc mnt etc/init.d target usr/scripts

Add the device nodes. We will only add the necessary device nodes: two
floppy disks, four IDE hard disks with 8 partitions each, two SCSI hard disk with
8 partitions each, two SCSI CD-ROMs, and four terminals. Further we need some
memory related devices and a ram disk. Become root and cd to the dev subdirec-
tory in the myboot/rootfs file system.

mknod fd0 b 2 0
mknod fd1 b 2 1
mknod hda b 3 0
mknod hda1 b 3 1
mknod hda2 b 3 2
mknod hda3 b 3 3
mknod hda4 b 3 4
mknod hda5 b 3 5
mknod hda6 b 3 6
mknod hda7 b 3 7
mknod hda8 b 3 8
mknod hdb b 3 64
mknod hdb1 b 3 65
mknod hdb2 b 3 66
mknod hdb3 b 3 67
mknod hdb4 b 3 68
mknod hdb5 b 3 69
mknod hdb6 b 3 70
mknod hdb7 b 3 71
mknod hdb8 b 3 72
mknod hdc b 22 0
mknod hdc1 b 22 1
mknod hdc2 b 22 2
mknod hdc3 b 22 3
mknod hdc4 b 22 4
mknod hdc5 b 22 5
mknod hdc6 b 22 6

13

mknod hdc7 b 22 7
mknod hdc8 b 22 8
mknod hdd b 22 64
mknod hdd1 b 22 65
mknod hdd2 b 22 66
mknod hdd3 b 22 67
mknod hdd4 b 22 68
mknod hdd5 b 22 69
mknod hdd6 b 22 70
mknod hdd7 b 22 71
mknod hdd8 b 22 72
mknod sda b 8 0
mknod sda1 b 8 1
mknod sda2 b 8 2
mknod sda3 b 8 3
mknod sda4 b 8 4
mknod sda5 b 8 5
mknod sda6 b 8 6
mknod sda7 b 8 7
mknod sda8 b 8 8
mknod sdb b 8 16
mknod sdb1 b 8 17
mknod sdb2 b 8 18
mknod sdb3 b 8 19
mknod sdb4 b 8 20
mknod sdb5 b 8 21
mknod sdb6 b 8 22
mknod sdb7 b 8 23
mknod sdb8 b 8 24
mknod sr0 b 11 0
mknod sr1 b 11 1
mknod tty c 5 0
mknod console c 5 1
mknod tty1 c 4 1
mknod tty2 c 4 2
mknod tty3 c 4 3
mknod tty4 c 4 4
mknod ram b 1 1
mknod mem c 1 1
mknod kmem c 1 2
mknod null c 1 3

14

mknod zero c 1 5

Add files in the /etc subdirectory. The init program from busybox
works without a login procedure, so the passwd and group files are not re-
ally needed. You could of course create single line versions for the root user and
group. Even the inittab file is not essential and busybox provides a reason-
able default. In our example we do copy the file scripts/inittab from the
busybox directory to /etc and make the following changes to it:

• Comment out the lines that contain getty.

• Change the first line containing ‘askfirst’ (shell on the console) as follows:

::respawn:-/usr/scripts/install_top

I created the file/etc/init.d/rcS, which must have execute permissions.

#!/bin/sh
mount -t proc none /proc

For the time being create a dummy install script /usr/scripts/install top
(remember to make it executable):

#!/bin/sh
dialog --msgbox "This can be your install script" 5 50
exit 0

Make all files in the root file system owned by root:

chown -R 0:0 /home/lennartb/myboot/rootfs

Now we have a complete root file system in a directory. We still need a kernel
and a way to boot. Further we need to transfer the file system to a floppy disk.

8 Building a Kernel

Now it is time to build a kernel. For the target system we will build a kernel that
is different from the host system kernel. We build it under the myboot directory.
First cd to the myboot/linux-2.4.21 subdirectory.

The most important job is configuring the kernel. Run the following com-
mand:

make menuconfig

15

Instead of menuconfig you can use config (not recommended!) or xconfig.
This will give a usable kernel for the target system.

• Processor type menu: processor family must be 486, switch off SMP sup-
port, leave the rest at defaults.

• General setup menu: switch off hot-pluggable devices, system V IPC and
sysctl support. Support ELF binaries, other formats can be disabled.

• Parallel port support can be switched off, unless you want to enable it for
PLIP networking or parallel port storage devices (ZIP disk, CD-ROM).

• SCSI: enable SCSI CD-ROM support, enable a large selection of low level
drivers as modules.

• Network device support: enable a large selection of Ethernet cards as mod-
ules.

• Code maturity, Module support, Memory Technology, Parallel port, Plug
and play, Multi-device, Telephony, I2O, Amateur radio, ISDN, Old CDROM,
Input core, Multimedia, Sound, and kernel hacking submenus: disable ev-
erything, if it was not already disabled.

• Block device submenu: support floppy, loop device, RAM disk and initial
RAM disk.

• ATA/IDE/MFM/RLL submenu: support, keep everything under the ATA/IDE. . .
block devices submenu the default.

• Character devices submenu: Support virtual terminal, console on virtual
terminal, Unix 98 PTY, disable everything else.

• File systems. Keep second extended, proc and dev PTS enabled. If you want
to mount DOS diskettes, enable fat, msdos and vfat. Enable iso9660, NFS
(client only) and ext3. If you want to experiment with other file systems
such as reiserfs, you must enable support for them.

• Console drivers. Keep VGA text console enabled.

• Exit and say Yes to save changes.

Of course you must adapt the configuration to the target system you are using are
you are anticipating your target audience to use. This kernel tries to be useful for
a large number of systems, from 486DX onward. The strategy is to keep things
in if they enable a user to get started with an installation, so it must be possible

16

to access SCSI harddisks and CD-ROMs and also the local area network in case
the machine does not have a CD-ROM. This kernel will be different from the one
that is going to be used after installation. Support for soundcards and printers is
probably unnecessary on this installation disk.

Now we only need to build the kernel:

make clean
make dep
make bzImage

The kernel described here should be around 900kB.
Next create the modules:

make modules
make INSTALL_MOD_PATH=$MYBOOT modules_install
cd $MYBOOT
tar zcvf modules.tar.gz lib

The modules will end up in a compressed tar archive, not normally stored on the
main RAM disk.

9 Making a Bootable Diskette

We will use GRUB and the initial RAM disk, even though they may not be the
optimum solution in all cases. Our choices were motivated as follows:

• GRUB is a modern boot loader, likely to stay around for some time. It does
not depend on a special assembler (like LILO or SYSLINUX). It can be
used almost everywhere and configuration files and kernels can be updated
without the need to reinstall the boot loader. It used to be very trouble free
to compile too.

• The initial RAM disk is a modern kernel feature, likely to stay around for
some time. It works on CD-ROMs as well (as opposed to the kernel loaded
RAM disk).

• GRUB can be instructed to read an initial RAM disk from a separate diskette,
while other boot loaders cannot.

17

9.1 Compiling GRUB

The current version of GRUB does not compile without patching the source, at
least not with the gcc-3.3 that came with Suse Linux 8.2.

First configure as follows:

./configure --disable-xfs --disable-reiserfs --disable-jfs \
--disable-vstafs --disable-minix --disable-ffs

This will get some of the bloat out.
Next edit the file stage2/fsys reiserfs (I know this file isn’t even

linked in) and remove the word ‘long’ from line 115, it should read:

__u32 j_mount_id;

This seems to be a real bug in the source code, but now we can simply make at
last.

Getting 0.93 to compile is even more troublesome. The linker keeps com-
plaining about missing memcpy Apart from the reiserfs bug, you have to edit the
file stage2/Makefile. Find the line with STAGE2 CFLAGS and change it
to:

STAGE2_CFLAGS = -Os -minline-all-stringops

But apply this fix only if your C compiler complains, earlier versions probably
don’t. If you apply the fix, do make clean first. Hopefully these bugs will be
fixed very soon.

9.2 Creating the RAM Disk Image

Create a directory mnt below $MYBOOT. This directory is used as a temporary
mount point, independent of mount points present in your Linux distribution.

Then run the following commands (put them in a shell script):

cd $MYBOOT
dd if=/dev/zero of=initrd.img bs=1k count=2000
mke2fs -F -N 300 initrd.img
mount -o loop initrd.img mnt
cp -a rootfs/* mnt
umount initrd.img
gzip -9 initrd.img

Now the contents of the root file system are contained in the compressed image
file initrd.img.gz. This can be mounted as an initial RAM disk.

18

9.3 Creating the Boot Diskettes

The combined size of the kernel and the initial RAM disk are larger than a single
diskette, so we have to make two diskettes. A third diskette will be needed to store
the modules.tar.gz file.

The first diskette is the trickiest to make. It will contain the boot loader and the
kernel. First put a fresh diskette into the drive and type the following commands:

fdformat /dev/fd0u1440
mke2fs /dev/fd0
mount /dev/fd0 mnt
mkdir mnt/boot
mkdir mnt/boot/grub
cp linux-2.4.21/arch/i386/boot/bzImage mnt/boot/kernel
cp grub-0.92/stage1/stage1 mnt/boot/grub
cp grub-0.92/stage2/stage2 mnt/boot/grub

Create the file mnt/boot/grub/menu.lst using an editor. It should contain
the following lines.

title Linux Installation Disk
root (fd0)
kernel (fd0)/boot/kernel
pause Please insert the second diskette
initrd (fd0)/initrd.img.gz

Next unmount the diskette and start GRUB.

umount mnt
grub-0.92/grub/grub

Inside GRUB type the following commands:

root (fd0)
setup (fd0)
quit

After this, the diskette is bootable and contains the kernel. If you want to update
the kernel, you only have to mount the diskette again and copy a new kernel file
to it. You can also edit the menu.lst file on the diskette without the need for
rerunning GRUB.

The second diskette will contain the RAM disk. Put a fresh diskette into the
drive and type the following commands:

19

fdformat /dev/fd0u1440
mke2fs /dev/fd0
mount /dev/fd0 mnt
cp initrd.img.gz mnt
umount mnt

The third diskette will contain the modules. Put a fresh diskette into the drive
and type the following commands:

fdformat /dev/fd0u1440
mke2fs /dev/fd0
mount /dev/fd0 mnt
cp modules.tar.gz mnt
umount mnt

9.4 Using the diskettes

Insert the first diskette into the floppy drive in order to boot. The GRUB menu
presents you with a single item, the Linux Installation Disk. Press Enter and the
boot loader will load your kernel. Insert the second diskette into the drive when
the boot loader prompts you for it. Next the RAM disk will be loaded. After this,
the kernel starts to decompress and print boot messages.

Next comes a screen that tells you that here could be your installation script.
This does not do anything useful for now.

Press ALT-F2, ALT-F3 or ALT-F4 to switch to another virtual terminal. Press
ALT-F1 to switch back to your ‘installer’. The other virtual terminals have shell
prompts and if you are familiar with Linux, you should be familiar with these.

In the shell window you can mount CD-ROMs, diskettes and hard disk parti-
tions. You have both fdisk and cfdisk to partition a hard disk. You have the vi
editor to edit files. You can create and repair ext2 file systems. If you manage to
get your Ethernet card working, there is even a possibility to mount an NFS file
system or to obtain files from the Web using wget.

What about the third diskette? You can mount it with:

mount /dev/fd0 /mnt

Next you can use tar to list the contents of the modules.tar.gz file and to
extract files from it. As the insmod command is also available, you can get your
Ethernet card or SCSI host adapter to work, at least in theory.

20

10 Creating a CD-ROM

Most modern PCs can boot from CD-ROM and in the near future most computers
will not even have floppy drives. Therefore we present an alternative configuration
using a CD-ROM. In our method we are essentially creating three levels of disk
image files:

• At the outermost level there is the iso file created by mkisofs.

• At the intermediate level there is the diskette image file that the BIOS can
boot from.

• At the innermost level there is the compressed RAM disk image.

We have to start at the innermost level.

10.1 Creating the RAM disk image

Creating the RAM disk image for a CD is really the same as for a diskette, only
this time we will fit the modules.tar.gz file into the RAM disk and hence
the RAM disk will be larger. Run the following commands (put them in a shell
script):

cd $MYBOOT
dd if=/dev/zero of=initrd.img bs=1k count=3000
mke2fs -F -N 300 initrd.img
mount -o loop initrd.img mnt
cp -a rootfs/* mnt
cp modules.tar.gz mnt/lib
umount initrd.img
gzip -9 initrd.img

10.2 Creating the Diskette Image

On the CD-ROM we will use a diskette image of 2.88MB. Real diskettes of this
size are really rare, but most PCs can boot from a diskette image on a CD.

First prepare an image file of a 2.88MB diskette and copy GRUB to it.

dd if=/dev/zero of=isoboot.img bs=1k count=2880
mke2fs -F isoboot.img
mount -o loop isoboot.img mnt
mkdir mnt/boot
mkdir mnt/boot/grub

21

cp grub-0.92/stage1/stage1 mnt/boot/grub
cp grub-0.92/stage2/stage2 mnt/boot/grub

Next create the file mnt/boot/grub/menu.lst with the following con-
tents:

title Linux Installation Disk
root (fd0)
kernel (fd0)/boot/kernel
initrd (fd0)/boot/initrd.img.gz

Unmount and run GRUB:

umount mnt
grub-0.92/grub/grub

Inside GRUB type the following commands:

device (fd0) isoboot.img
root (fd0)
setup (fd0)
quit

Now the diskette image (hopefully) contains a working boot loader. Keep a
copy of this image, so you can add your kernels and RAM disk images later.

Finally copy your RAM disk and kernel to it:

mount -o loop isoboot.img mnt
cp linux-2.4.21/arch/i386/boot/bzImage mnt/boot/kernel
cp initrd.img.gz mnt/boot
umount mnt

This diskette image is already quite full, so this spells the worst for newer software
versions or extensions. As a first measure we can remove the Ethernet drivers from
modules.tar.gz. If we can boot from a CD-ROM, we may as well assume
we have a CD-ROM and we can install from there. Otherwise you can consider
the isolinux CD boot loader, which does not use diskette images, but can use
kernels and RAM disk images anywhere on the CD.

It’s worth considering the removal of both module support and network sup-
port from the kernel and to compile most common SCSI host adapters directly
into the kernel. Functionality related to modules and networking can then also be
removed from Busybox.

22

10.3 Creating the Bootable CD

First create a directory tree for the ISO image.

mkdir iso
mkdir iso/boot
mkdir iso/data

Next copy some files to the data subdirectory (in our example we use a hypothet-
ical file distro.tar.gz and copy the diskette image to the boot directory.

cp distro.tar.gz iso/data
cp isoboot.img iso/boot

Now create the ISO image.

mkisofs -o bootcd.iso -b boot/isoboot.img \
-c boot/boot.catalog -r iso

Finally burn it to a CD-ROM. Use the appropriate device ID.

cdrecord dev=0,1,0 -eject -pad -data bootcd.iso

This CD is bootable and from the booted Linux you should be able to mount
the CD-ROM to access the data files.

11 Creating the Install Scripts

The diskettes and CD-ROM created so far, do not contain any installation scripts.
They are usable as-is if you only need to install your freshly created Linux from
Scratch distribution, but for a distribution that must be installed by unexperienced
people, installation scripts are essential.

11.1 Example Installation Scripts

This section gives an overview of a set of example installation scripts. Their
functionality is inspired by the Debian installer. These scripts are really simplified
and should not be considered suitable for production use. The use of dialog and
moderately complex shell programming are central to these installation scripts.
All scripts are located in the /usr/scripts directory in the RAM disk and all
must have execute permission.

Each invocation of the dialog command represents a visible screen that is
presented to the user. Depending on the command type (e.g. --msgbox or

23

--menu a different type of screen is shown. The output of most commands (the
actual selection) is printed on the standard error device stderr. The redirect
2>$TEMPNAME causes this data to be stored in a temporary file. Using a cat
command with back quotes we can put the contents of that temporary file in a
variable. Note that many dialog commands are extended across multiple lines
and the backslash must be the very last character on a line.

The top level script install top sets a few variables that will be used
throughout the installation. Next it starts with an introduction screen and it con-
tinues with the menu, which is repeated indefinitely. After each menu selec-
tion, a command is invoked, whose name is the concatenation of install
and the selection. Therefore we can call eight scripts from the top level script:
install keyboard, install partition, install swap,
install filesys, install modules, install install,
install configure and install reboot.

#!/bin/sh
Example top level install script.
export TEMPNAME=/tmp/choice
export SCRIPTDIR=/usr/scripts
export SOURCEDIR=/mnt
export TARGETDIR=/target

dialog --clear --msgbox \
"Welcome to the Linux Installation Disk\n

Press ENTER to start installation.\n
Press ALT-F2, ALT-F3 or ALT-F4 for a shell prompt.\n
\n
Please make sure that all your disks are backed up\n
before you start installation" 18 60

while true
do
dialog --clear --menu "Linux Installation Disk Main Menu" \

18 60 8 \
keyboard "Select keyboard layout" \
partition "Partition a disk with cfdisk" \
swap "Select a swap partition" \
filesys "Create a file system" \
modules "Load kernel modules" \
install "Install Linux " \
configure "Configure Linux " \

24

reboot "Reboot the system " 2>$TEMPNAME
SELECTION=‘cat $TEMPNAME‘
$SCRIPTDIR/install_$SELECTION
done

The script install keyboard selects one of a few keyboard layouts. The
interesting thing is that it also stores the name of the selected map file into the file
/tmp/keyfile. Form there, the configuration script can adjust the keyboard
layout selection in the target system, so when the target system is rebooted, it will
have the correct keyboard layout enabled as well.

#!/bin/sh
#Keyboard configuration script.

KEYDIR=/usr/share/kbd/keymaps/i386

dialog --clear --menu "Select Keyboard Layout" 18 60 5\
US "Standard US layout (common in the Netherlands)" \
UK "UK layout" \
DE "German layout (QWERTZ)" \
FR "French layout (AZERTY)" \
BE "Belgian layout (AZERTY)" 2>$TEMPNAME

SELECTION=‘cat $TEMPNAME‘

case $SELECTION
in
US) KEYFILE=$KEYDIR/qwerty/us.map.gz ;;
UK) KEYFILE=$KEYDIR/qwerty/uk.map.gz ;;
DE) KEYFILE=$KEYDIR/qwertz/de.map.gz ;;
FR) KEYFILE=$KEYDIR/azerty/fr.map.gz ;;
BE) KEYFILE=$KEYDIR/azerty/be-latin1.map.gz ;;
esac
Save name of keyboard file for later.
echo -n $KEYFILE /tmp/keyfile
loadkeys $KEYFILE

The script install partition lets the user select a hard disk and invokes
cfdisk.

#!/bin/sh
#Partition a hard disk.

25

dialog --clear --menu "Select a hard disk to partition"\
18 60 6 \
hda "Primary IDE master" \
hdb "Primary IDE slave" \
hdc "Secondary IDE master" \
hdd "Secondary IDE slave" \
sda "First SCSI" \
sdb "Second SCSI" 2>$TEMPNAME

SELECTION=‘cat $TEMPNAME‘
cfdisk /dev/$SELECTION

The script install swap lets the user select a swap partition. It initializes
the input field with the string /dev/. Next it asks for confirmation, as mkswap
does a really destructive job to the selected partition. It records the partition name
in the temporary file /tmp/swappart. The use of an input box to select a
partition is not the most user-friendly way to do this job. Ideally the script would
read the partition table and put those partitions with type 0x82 in a menu list to
select from, but this is more complex.

#!/bin/sh
Select and install a swap partition

dialog --inputbox "Enter the name of your swap partition"\
5 60 /dev/ 2>$TEMPNAME

SELECTION=‘cat $TEMPNAME‘

dialog --yesno \
"Any data on $SELECTION will be erased forever!\n

Are you really sure you want to continue?" 18 60

if [$? = 0]
then

echo -n $SELECTION >/tmp/swappart
mkswap $SELECTION
swapon $SELCTION

fi

The script install filesys is almost a copy of the install swap
script. Apart from the user-friendliness issue, this script should really be extended
to allow multiple file system partitions, each on its own mount point.

26

#!/bin/sh
Select and install a root partition

dialog --inputbox "Enter the name of your root partition"\
5 60 /dev/ 2>$TEMPNAME

SELECTION=‘cat $TEMPNAME‘

dialog --yesno \
"Any data on $SELECTION will be erased forever!\n

Are you really sure you want to continue?" 18 60

if [$? = 0]
then

echo -n $SELECTION >/tmp/rootfs
mke2fs $SELECTION

fi

The script install modules is not implemented yet. It should offer a way
to access the modules.tar.gz file, it should offer a selection of all available
modules and next it should selectively extract the selected modules from the tar
file. Finally it should ask the user for module parameters and run insmod on the
specified module. This is left as an exercise to the reader. Likewise there should
be an install network script to configure the network.

The script install install lets the user select a CD-ROM drive to install
from. In the real world there should be a way to install from other sources as
well, such as the network (nfs, wget) or an existing hard disk partition. Next it
mounts the CD-ROM on the source directory. Next it asks for the name of the
root partition. The script tries to be smart and already suggests the saved partition
name in /tmp/rootfs if it exists. It mounts the partition on /target and
proceeds to extract the giant tarball distro.tar.gz that contains everything
from the distribution.

#!/bin/sh
This installs the Linux system onto the hard disk.

dialog --menu "Select CD-ROM to install from" 18 60 6 \
hda "Primary IDE master" \
hdb "Primary IDE slave" \
hdc "Secondary IDE master" \
hdd "Secondary IDE slave" \
sr0 "First SCSI" \
sr1 "Second SCSI" 2>$TEMPNAME

27

SELECTION=‘cat $TEMPNAME‘
mount -r -t iso9660 /dev/$SELECTION $SOURCEDIR
if [$? != 0]
then

dialog --msgbox "Mount failed!" 18 60
exit 1

fi
if [-f /tmp/rootfs]
then

ROOTFS=‘cat /tmp/rootfs‘
else

ROOTFS=/dev/
fi
dialog --inputbox "Select root partition" 18 60\

$ROOTFS 2>$TEMPNAME
ROOTFS=‘cat $TEMPNAME‘
echo -n $ROOTFS >/tmp/rootfs
mount -t ext2 $ROOTFS $TARGETDIR
if [$? != 0]
then

dialog --msgbox "Mount failed!" 18 60
umount $SOURCEDIR
exit 1

fi
cd $TARGETDIR
tar zxvf $SOURCEDIR/data/distro.tar.gz

The install reboot script could not be simpler. At least it asks for con-
firmation.

#!/bin/sh
Reboot script

dialog --yesno "Ready to reboot?" 18 60
if [$? = 0]
then

reboot
fi

28

11.2 Configuring Linux

What remains is the install configure script. What it does is really depen-
dent on the actual distribution that you installed. As a minimum it should do the
following things:

• Set the default keyboard mapping depending on what you specified in the
install keyboard script.

• Create an /etc/fstab file containing the selected root and swap parti-
tions.

• Make the system bootable. This is described in the next subsection.

Other things the configuration script could do:

• Set a root password.

• Set the time zone.

• Perform configuration of the network or to transfer the install-time config-
uration to the target system.

• Configure the kernel modules or to transfer the install-time module config-
uration to the target system.

After extracting the base system (the big tarball), you have the following op-
tions to proceed:

• Complete the installation using only programs that are on the RAM disk.
There are only a few things that you absolutely have to de before you can
reboot.

• Remain running from the RAM disk but also use programs and scripts that
are on the freshly created hard disk partition. Binaries should be specially
linked against uClibc.

• Perform a chroot into the root file system on the hard disk and run the
second part of the install script from there. Once you have chroot-ed into
the hard disk, you can normally use all shared libraries. The user need not
be aware of the transition.

• Achieve the same result as before by using pivot root. With pivot root we
can jump out of the initial RAM disk into the real root file system. We
need to arrange that the post-install configuration script is run from init, but
only the first time the system is run (the script removes itself from the init
scripts). This has the advantage that the RAM of the RAM disk can be
reclaimed.

29

In the latter two cases you are no longer limited by the programs and libraries
available in the RAM disk. Without an intervening reboot you can continue to
install and configure X, all your network services or just about anything. It is even
possible to continue to use the system for production without a single reboot. This
is not wise, because you want to test that the system is capable of rebooting.

11.3 Making the System Bootable

After the tarball distro.tar.gz is extracted, the root file system contains all
files that make up the Linux distribution, including the kernel. A few files (such
as /etc/fstab depend on your local situation and should be adjusted by the
configuration script. Even then the system is not yet bootable12. Making the
system bootable is an essential step that the configuration script must perform.

Assume that the kernel on the hard disk contains all drivers necessary to mount
the root file system from the hard disk (all necessary SCSI drivers). If you go for
a minimal kernel, you will probably need to create a custom initial RAM disk,
one that loads the necessary modules. Some distributions contain the mkinitrd
script.

Making the target system bootable consists of the following steps:

• Creating LILO/GRUB config file. The name of the root file system is al-
ready contained in the /tmp/rootfs file, so this can readily be substi-
tuted into the configuration file. For GRUB we will need to translate it to a
GRUB partition name as well, which may be a bit tricky in the shell envi-
ronment available on the boot disk,

• Running the LILO/GRUB installer. The normal LILO or GRUB binary can-
not be run from the install system as it is linked against the wrong libraries.
For now assume that we use a version of the GRUB installer that is linked
against uClibc. This needs not be included in the RAM disk, it can be on
the hard disk in a special directory, which may be removed later.

The GRUB that came on the diskette or CD-ROM that you started the installation
with, is also capable of making the system on the hard disk bootable, but this is
not something to expect from an end user.

In a real-world system the configuration script should accommodate at least
three situations:

• Linux is alone on the system.

12But it can be booted using the GRUB floppy or CD-ROM that you installed from, but this is
not something for an end-user

30

• Linux must co-exist and be dual-bootable with an existing Windows instal-
lation.

• The system already has a boot manager of some sort (another GRUB, Win-
dows NT boot manager) and the user will configure the boot manager to
boot Linux as well.

In the former two cases, LILO or GRUB should be installed in the MBR of the
hard disk, in the latter case, LILO or GRUB should be installed in the boot sector
of a partition.

An alternative to making the system bootable from the hard disk is to create
a custom boot diskette. In this case the configuration script only has to dd a pre-
existing GRUB image to a formatted diskette and to write a custom menu.lst
file to it. This saves the trouble of having to compile a custom uClibc version of
GRUB and to keep existing boot managers intact. The problem is that in the near
future, most new PCs won’t have floppy drives, so this approach cannot be used.

11.4 Debugging Installation Scripts

There are at least three ways to debug the installation scripts:

• If the host system has the dialog utility, you can run the scripts on the
host system. It is not wise to reformat random partitions though. Instead
of doing a real mke2fs you could include an echo statement followed by
sleep 5. This can at least be used to get most of the logic of your scripts
right. Especially you can check that menus and other screens are displayed
correctly.

• One step further is to chroot into the rootfs directory and to run the
scripts from there. This way we can make sure that the shell, the dialog
utility and the available shell commands are the same as on the target sys-
tem.

• The next step is to create the RAM disk image that includes the scripts from
the /usr/scripts directory and to copy it to a floppy or even a CD-
ROM. Next we can boot on a real machine or a virtual PC product such as
VMWARE or bochs. Preferably this is an old machine with a scratch hard
disk that you can reformat as you like (or a hard disk image contained in a
scratch file of a virtual PC product).

You do not need to recreate the RAM disk image and reboot in order to fix
every bug. Instead you can run a shell in a parallel virtual terminal. You
can edit the scripts using the vi included in Busybox. You can kill the top

31

level install script to make it start all over. Mount a diskette and (regularly)
copy the edited and debugged shell scripts to it. Warning: if you switch off
the computer without saving the debugged shell scripts, you lose them of
course. Later the debugged scripts can be copied from the diskette back to
the $MYBOOT/rootfs/usr/scripts directory on the host system and
the boot diskettes or CD-ROM can be rebuilt.

12 Conclusion

It is not only feasible to create your own Linux system from scratch, but also your
custom installation diskettes. This way it becomes possible to make installation
diskettes for machines that are no longer supported by modern Linux distributions.
It is also possible to use this system to install special-purpose Linux distributions
on a large number of machines in a company. If you wondered: that’s the profit
part of the title. If you managed to read this text so far, you obviously understand
the fun part.

A few concluding remarks:

• Shell scripting and dialogmay not be very user friendly, but it is possible
to create a usable installer with them. Debian has done this for a while.

• I am apparently far removed from the professional level Linux installers.
I’ve not yet developed scripts to select and install modules satisfactorily.
My current diskettes have network support, but no practical way to load
the necessary modules for the Ethernet card. Maybe I should borrow some
Debian installation scripts.

• It is still possible to support 486 machines with 8kB of RAM, even with the
latest kernel.

• With kernel 2.4 is not really possible to create single diskette installation
disks if a reasonably featureful kernel is desired. Two diskette systems and
2.88MB diskette images (for a bootable CD) are still possible.

• This text is a general plan to create installation disks. Many features can be
added or removed. Network support could be removed or on the other hand
we could add a DHCP client and a small web browser. Support for reiserfs
(or other advanced file systems) could be added (you need kernel support
and the utilities to create the file systems). Maybe you want a different
editor or even a Basic interpreter. It’s all yours to decide.

32

