Coreboot: the open source

BIOS.

Lennart Benschop
Presentation at T-DOSE 2011
Sunday 2011-11-06 10:00




* Inroduction
* Why Coreboot?

e Architecture

e Practical matters
* Demo (using virtual machine)

e Questions




Introduction

e What 1s Coreboot?

- Free firmware for the x86 architecture, alternative
to BIOS

 When was the project started?

- In 1999, at Los Alamos National Laboratory as
LinuxBIOS

* Why?

- Enable unattended booting of cluster nodes




Why Coreboot?

* Applications:
- Embedded x86 systems
- Rackmounted servers and clusters

- Normal PCs




Why for embedded

systems?

 Embedded x86 applications:
- media centers, smart TVs, PVRs
- Test & measurement, logic analyzers etc.

- Industrial control

- Ticket vending machines, voting machines, photo

kiosks etc.




* No royalty payment (only relevant for high volume

products)
* Fast booting
* Reliable untattnded booting




Why for servers and

clusters?

* Reliable unattended booting
- No keyboard
- Do not depend on CMOS parameters
- Control of which device to boot from

- Independent of local harddisks, boot using
network protocols

<r



Why for normal PCs?

» Because we can

» Continued updates/bug fixes

» Stay in control of your own hardware (secure boot)

<r



Architecture

* Payload
» Coreboot proper
- RAM stage (running from RAM)
- ROM stage (running from ROM)
- C part
- Assembly part (boot block)

<r



Payloads

* Hardware independent (comparable to Linux
kernel)

* Types of payload
- SeaBIOS (implementation of legacy BIOS)

- Linux kernel
- Boot loader (FILO)

- Application (game, diagnostics).

- In future: Tiano Core (UEFI implementation) |



PC Architecture

FPentinm I CFUT

sonthbndge

PCI Slotz

LPZbns=

BIOS RO

Floppy Parallel

Senal P52




Startup Sequence

» Switch to protected mode (assembly)
» Enable Cache as RAM (assembly)
e Initialize RAM (C, ROM stage)

- read SPD ROMs

- configure memory module in Northbridge
» Imitialize PCI devices (C, RAM stage)
* Run option ROMs

» Start payload

<r



e Read-only file system in ROM

* Named entries (e.g. fallback/ramstage)

* Entries can be compressed (LZMA)

* Stages, payload, option ROMs, config files

<r



* Almost completely in C

* Almost completely 1n 32-bit protected mode
- Real mode parts restricted to:
- 16 1nstructions at startup

- Option ROMs
- SeaBIOS (has to provide legacy interface)

<r



Practical Matters

* Obtaining sources
- Git repository

e Compiling

* Flashing

* Debugging

* Development




* Cross-compiler required in most cases

* Configuring (make menuconfig)

* Compile payload separately (for some payloads)
* Make

* Add files to ROM 1mage (cbfstool)

<r



* Project flashrom at coreboot.org
- Allows flashing under Linux
* Need to recover
- PROM programmer (expensive)
- Dedicated programmer for one chip (cheap)
- Hot swapping (dangerous)
- BIOS Savior
- ROM emulator

<r



Debugging

 POST codes on port (0x80) easy on ISA, harder on
PCI.

* Serial output

 EHCI debug port

* Debug payloads and higher layers under QEMU
« AMD SimNow

« ROM emulator

 In-circuit emulator (expensive)

<r



Development

* Payload develment

- Libpayload as library for payloads

- Hardware independent (perfectly fine on QEMU)
* Porting to new hardware (more challenging)

- Documentatiion hard to obtain

- Very hardware dependent

- Can only be debugged on real hardware

<r



Resources

* Website

* Mailing lists

» (it repository

* Related projects:

- flashrom

- SeaBIOS



http://www.coreboot.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

